Comparing hierarchies of total functionals

نویسنده

  • Dag Normann
چکیده

In this paper, we will address a problem raised by Bauer, Escardó and Simpson. We define two hierarchies of total, continuous functionals over the reals based on domain theory, one based on an “extensional” representation of the reals and the other on an “intensional” representation. The problem is if these two hierarchies coincide. We will show that this coincidence problem is equivalent to the statement that the topology on the Kleene-Kreisel continuous functionals of a fixed type induced by all continuous functions into the reals is zero-dimensional for each type. As a tool of independent interest, we will construct topological embeddings of the Kleene-Kreisel functionals into both the extensional and the intensional hierarchy at each type. The embeddings will be hierarchy embeddings as well in the sense that they are the inclusion maps at type 0 and respect application at higher types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Functional Paradigms for Exact Real-Number Computation

We compare the definability of total functionals over the reals in two functional-programming approaches to exact real-number computation: the extensional approach, in which one has an abstract datatype of real numbers; and the intensional approach, in which one encodes real numbers using ordinary datatypes. We show that the type hierarchies coincide up to second-order types, and we relate this...

متن کامل

Hierarchies of total functionals over the reals

We compare two natural constructions, the A-hierarchy and the R-hierarchy, of hereditarily total, continuous and extensional functionals of ,nite types over the reals. The A-hierarchy is based on the closed interval domain representation of the reals while the R-hierarchy is based on the binary negative digit representation. We show that the two hierarchies share a common maximal core. To this ...

متن کامل

A rich hierarchy of functionals of finite types

We are considering typed hierarchies of total, continuous functionals using complete, separable metric spaces at the base types. We pay special attention to the socalled Urysohn space constructed by P. Urysohn. One of the properties of the Urysohn space is that every other separable metric space can be isometrically embedded into it. We discuss why the Urysohn space may be considered as the uni...

متن کامل

Equivalence of K-functionals and modulus of smoothness for fourier transform

In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.

متن کامل

Discovering and Comparing Topic Hierarchies: Master’s Project

DISCOVERING AND COMPARING TOPIC HIERARCHIES: MASTER’S PROJECT

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2005